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A one-dimensional model is used for simulating coupled heat and mass transfers in a 
vertical porous medium column, with the upper end subjected to a negative temperature. 
The model can predict accurately both temperature and total water content profiles along 
the column, provided that both heat- and mass-conservation equations are solved 
simultaneously. On the contrary, when only heat transfer equation is solved, the position 
of the moving freezing front (isothermal of 273.16°K), is systematically underestimated. 
Moreover, it was shown that the commonly used surface-tension viscous-flow theory for 
estimating the temperature-dependent soil hydraulic properties (i.e., matric potential 
versus liquid water content, hi®l], and hydraulic conductivity versus liquid water content, 
K[OI]), when combined with the model, fails to describe satisfactorily the evolution of 
the freezing process. 
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I n t r oduc t i on  

Both thermal and moisture regimes in unsaturated, partially 
frozen soils influence simultaneously moisture movement and 
water storage in the frozen region. Considerable effort has been 
made in attempting to define the mechanisms of water trans- 
port from the unfrozen to the frozen zone. It was proved that 
moisture migration generated by the freezing process is contin- 
uous, as long as both cryogenic suction and temperature 
gradients are developed and an external water supply is 
available (Vauclin and Giakoumakis 1987). 

This phenomenon, with or without frost heaving has impor- 
tant consequences in hydrology, foundation and highway 
engineering and agriculture, in both seasonal frost and 
permafrost areas. 

Many theoretical approaches have been developed to corre- 
late water migration to driving suction and thermal gradients 
or to hydraulic and thermal soil properties (Aguirre-Puente 
and Fremond 1975; Hoekstra 1966; Morel-Seytoux 1979; 
Miller 1980). Moreover, many mathematical models have been 
proposed to describe heat and water flow in freezing soils 
(Aguirre-Puente et al. 1978; Guymon and Luthin 1974; Kay 
et al. 1976; Kennedy and Lielmez 1973). 

In this study, the mathematical model is solved numerically 
by the finite-difference method, using an impficit scheme. The 
model considers two different approaches for estimating varia- 
tions of the soil hydraulic properties with temperature: the 
surface-tension viscous-flow theory (STVF) and the Gain factor 
empirical model (Nimmo and Miller 1986). Simulation yields 
temperature and total water content (liquid and ice) profiles, 
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which were compared with experimental data obtained on a 
vertical column of unsaturated fine/medium sand, and sub- 
mitted to various initial and boundary conditions including 
freezing on soil surface. It was shown that the model can predict 
satisfactorily the physical process (i.e., evolution of temperature 
and total water content profiles along the column, liquid-water 
transport from the unfrozen to the frozen zone of the soil, and 
position of the moving freezing front), provided that both 
conservation equations are solved simultaneously and varia- 
tions with temperature of the soil hydraulic properties are 
quantified via the Gain factor empirical model. On the 
contrary, when STVF theory is used or/and only temperature 
conservation equation is solved, the model fails to predict 
accurately the overall processes related to soil freezing. 

Mathematical  model 

The mathematical formulation of simultaneous heat and mass 
transport in a partially frozen, unsaturated porous medium is 
based on the system of heat- and mass-conservation equations 
proposed by Harlan (1973). Because of the strong nonlinearity 
of these equations, only numerical techniques are used for 
solving the problem, provided that both hydraulic and thermal 
medium properties under unfrozen and frozen conditions are 
previously determined. The model used is based on several 
assumptions, some of which have been validated experiment- 
ally: 

1. The porous medium is considered to be homogeneous, 
isotropic and rigid (no deformation of the solid matrix 
occurs during freezing). 

2. Both air and ice phases are assumed to be at the atmospheric 
pressure. 

3. The water is chemically pure. No simultaneous solutes 
transport occurs. 
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4. Capillary theory of the water transport is valid, both in the 
unfrozen and frozen zones. Especially in the frozen zone, the 
cryogenic suction developed, is a function of the unfrozen 
water content, which in turn, is a function of the temperature 
decrease below 273.16K, (0°C), (freezing point depression). 

5. In the heat transport equation, the convective term is 
considered negligible compared with the conductive term. 
Besides, it was shown experimentally that the vapor phase 
contribution to mass transport is of negligible magnitude 
(Fuchs et al. 1978; Taylor and Luthin 1978). 

6. Local thermodynamical equilibrium exists between liquid 
water and ice phases (Kay and Groenevelt 1974). 

Under the foregoing assumptions, the one-dimensional coupled 
heat-fluid flow transport equations, are derived. 

Mass-transport equation: 

Ch(®l, T)Oh/Ot = d/dz[K(® 1, T) (dh/~z - 1) 

+ DT(Ot, T)dT/Oz] + AS (1) 

with Ch(C~t, T) = aOt/Oh T and AS = - ( p d p t ) d O , / d t  

Equation 1, is a slightly modified version of the one proposed 
by Harlan. Namely, it also takes into account the liquid 
moisture flux in the unsaturated zone induced by thermal 
gradients. According to Philip and De Vries (1957), the thermal 
liquid diffusivity coefficient on the right hand side of Equation 
1 can be expressed as follows: 

DT(®~, T) = K(® t , T)h(® 1 , T)y(T) (2) 

with y(T) = 1/a(T)da/dT 

Heat-transport equation: 

Cap~T/~t = a /dz[~T/Oz)]  (3) 

with C~p = C* -- R,LI,~3®,/OT = C* + RILI ,001 /OT  

Equation 3 can also be written 

(C*~T/Ot - R1L~,dO,/at  ) = d/Oz[2(dX/~z)] (4) 
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Subscripts 
ap 
i 
Tre 
T 

freezing front location with respect to the 
column's surface, L 

impedance of the porous plate, T -  1 
temperature coefficient of surface tension, 
K - t  
rate at which liquid water is converted to 
ice per unit volume per unit time, T -  1 
freezing point depression relative to the 
freezing point of free water, K 
total volumetric water (liquid water and 
ice) content, L3L - 3 
volumetric content of the ith constituent of 
the porous medium, L3L - 3 
volumetric ice content, LaL - 3 
volumetric liquid water content, L3L - 3 
volumetric water content at saturation, 
L3L-3 
empirical weighing factor of the ith 
constituent 
thermal conductivity of the porous medium, 
M L T - 3 K - I  
thermal conductivity of the ith constituent, 
MLT-  3K- 1 
kinematic viscosity of liquid water, 
L2T- 1 
densities of liquid and ice fractions, 
respectively, ML -3 
surface tension at the liquid water-air 
interface, MT-  2 
surface tension at the liquid water-ice 
interface, MT-  2 
exponent 

apparent 
ith medium's constituent 
at reference temperature 
at temperature T 
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As can be observed from Equations 1 and 4, the coupling term 
00,~Or expresses the decrease of the liquid water in the frozen 
zone, with respect to time (phase change liquid water to ice). 

Experimental study 

Experiments were conducted in a vertical soil column, packed 
into a Plexiglas cylinder 55 cm high, with an inside diameter 
of 6 cm (Giakoumakis 1987). Water flow into and from the soil 
column was realized through a ceramic porous plate (impe- 
dance ~ = 0.001 s -1, thickness lp = 0.2cm), placed at the 
bottom of the cylinder, allowed it to be connected with an 
external constant piezometric head. 

Hollow brass liquid circulation plates connected to cryogenic 
baths were placed at both ends of the column to apply a 
constant temperature at each end. 

To obtain a constant thermal gradient along the column 
during nonisothermal experiments or for establishing isother- 
mal conditions all over the cylinder (case of isothermal experi- 
ments), a lateral dynamic insulation system, involving 10 
independent parallelepipedic cells (36 x 18 x 5.5cm), was 
used. Each cell contained appropriate devices (serpentine- 
shaped exchanger connected to the cryogenic baths and a 
heating electrical resistance), allowing adjustment of the air cell 
temperature to the soil temperature at the same depth. 
Furthermore, the air temperature in each cell was kept as 
uniform as possible by means of an electrical fan. 

The system was controlled automatically by a Zilog Z-80 
microcomputer in such a way that the difference between the 
air and soil temperatures never exceeded +0.1K, this 
difference kept constant, even for long experimental durations 
(Giakoumakis 1984). 

The variables of state, namely, air and soil temperatures, T, 
and T,, total (liquid water and ice) volumetric water content, 
O, as well as matric potential, h, were measured at 10 different 
column depths, using specific devices (Albergel 1984; Vachaud 
and Thony 1971): platinum resistances, gamma-ray attenuation 
(comprised a 300-mCi Am 241 source and a scintillation 
detector, both positioned on a moving platform) and 
differential pressure transducers, respectively (Figure I). All 
measured data were stored by the microcomputer at constant 
time intervals. 

The soil used was an alluvial fine/medium sand (0.05--0.5 
mm) without organic matter, consisting mainly of quartz (55 

Figure 1 General v iew  of  the exper imental  set -up 

Unsaturated partiafly frozen soil: S. G. Giakoumakis 

percent) and of other minerals (45 percent). After soil's packing 
into the cyfinder, medium's uniformity was verified by deter- 
mining the bulk density distribution profile, using the gamma- 
ray attenuation system (mean value: 1.63 ___ 0.0127 gr/cm3). 

Two types of experimental tests were carried out. 

1. Isothermal experiments comprising wetting and drying 
cycles performed at 293.16, 281.16 and 276.16K, kept 
constant in time. These experiments allowed to determine 
the soil hydraulic properties h(O1) and K(Oi) at each one 
of the three temperatures as well as their variations with 
temperature. 

2. Nonisothermal experiments, with different initial and 
boundary thermal and moisture conditions. Two cases were 
considered. 
a. Nonfreezing conditions: in this case, the soil thermal 

diffusivity and conductivity were determined as functions 
of liquid-water content, O1. 

b. Freezing conditions (negative temperatures applied at the 
soil surface): this allowed to study the penetration of a 
moving freezing front into the unsaturated soil. 

Medium properties 

To solve the heat- and mass-transfer equations, soil hydraulic 
and thermal properties have to be known. For this study, both 
experimental and theoretical approaches have been used for 
determining medium properties under unfrozen and frozen 
conditions. 

Hydraulic properties o f  the unfrozen soil 

Medium hydraulic properties are expressed by the characteris- 
tic functions matric potential versus water content, h(Ol), and 
hydraulic conductivity versus water content, K(Ol), which are 
closely dependent on temperature (Haridasan and Jensen 1972; 
Hopmans and Dane 1986; Novak 1975). On the contrary, it 
has been proved that the normalized forms h*(Ol) and K*(®l) 
of these functions are independent of temperature (Giakouma- 
kis and Tsakiris 1991). 

hT(O1)/aapT = hTre(Ol)/O'Tre = h*(O1) (5) 

KT(O1)l~apr = Krre(Oi)Vrr e = K * ( O I )  (6) 

where hT(Ol), K~(O1) and hrr,(Ol), KTr®(O1) are the soil 
characteristic functions at temperatures T and T,., respectively, 
whereas O'Tr e and VT,. are the surface tension and kinematic 
viscosity values at the reference temperature. Moreover, ¢,pT 
and V=pT are the "apparent" surface tension and kinematic 
viscosity at temperature T, given by 

U=pr = ~rT,=(l + Gh(O,){rO'T/~rVr=-~ -- I}) (7) 

v,,T = vT,o/(1 - 6 k ( o 1 ) { 1  --  ['V.rrJvT-I}) (8) 

where G h and Gk(Gh, G k _> 1) are the Gain factors correspond- 
ing to h(O1) and K(O1), respectively, whereas er  and v T are the 
surface tension and kinematic viscosity at temperature T. 
Equations 7 and 8, for Gh = Gk = 1, result in the well-known 
STVF theory equations (~,pT = err, V,pr = v0. 

In this work, the experimental research (isothermal 
experiments involving infiltration and drainage cycles at 293.16, 
281.16 and 276.16K), has shown for the soil studied 
(fine/medium sand) that the STVF method is not adequate to 
explain the observed variations in both h(O1) and K(Ot) 
functions, with temperature. This may be attributed to the 
temperature effect on the entrapped air in the soft matrix 
(Chahal 1964; Peck 1960) and/or the presence of surface active 
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contaminants at the air-water interfaces (Wilkinson and Klute 
1962). As for the K(Ot) function, Constantz (1982) elairned that 
discrepancies between measured and STVF predicted values 
could be explained by the higher temperature coefficient of 
kinematic viscosity of capillary water compared with free water. 
Moreover, Nimmo and Miller (1986) showed that the STVF 
approach is more appropriate to predict h(Ot) and K(®~) 
changes with temperature for coarse soils (e.g., coarse sand) 
than for fine-textured soils. 

Considering as reference temperature T,= = 293.16K and 
using the data collected at the three temperatures, experimental 
values of Gh and Gk were derived at different water contents, 
®1. 

Gh(®l) = ( [ h T ( O l ) / h T r e ( ® l )  ] - -  1) / ([a-r /a .r~=] - -  1) (9) 

Gk(®l) = (1 -- [Kr(OO/K.rre(®O])/(1 - ~)Tre/VT) (10) 

Thus, the apparent surface tension and kinematic viscosity, asp 
and v,p, were calculated at 281.16 and 276.16K (Equations 7 
and 8) and the normalized experimental points hr(Ot)/a=pT and 
Kr(®l)v~pr, were determined (Equations 5 and 6). Finally, 
least-squares fits for the h*(®t) and K*(®0 functions were 
obtained (Figures 2a and b). 

The form of the least-squares equations, as well as their 
fitting parameters, are given in Table 1 (Equations TI.1 and 
T1.2/parameter set 1). For comparison reasons, in the same 
table are also presented the fitting parameters corresponding 
to the least-squares fits of hr(Ol)/tr r and KT(®l)Vr, 
experimental points (STVF method--Equations TI.1 and 
T1.2/parameter set 2). The STVF normalizations are illustrated 
in Figures 3a and b. By comparing the mean quadratic error 
(MQE) values of the normalized h*(®l) fitted curves, as well 
as the correlation coefficient (CC) of the K*(Ot) fitted curve 
(Gain factor approach), with the MQE and CC values 
corresponding to the normalizations obtained by the STVF 
method, it is obvious that, when normalizations are performed 
through Gain factor's model, MQE values are lower, whereas 
the CC value is much higher (Table 1). 

Hydraulic properties of  the frozen soil 

In the frozen soil the cryogenic suction corresponding to the 
unfrozen water increases (in absolute value) as the quantity of 
water is reduced by ice formation. The cryogenic suction, he,, 
can be related to the freezing point of the pore water, AT, via 
Clausius-Clapeyron equation. 

hc~(A T) = [ L~s/(gTo)]A T (11) 

Equation 11 has been validated experimentally for different soil 
types (Williams 1964b). 

For a granular medium (sandy soil), the capillary 
interpretation of the cryogenic suction and the hypothesis that 
there is an analogy between the unfrozen and frozen 
soil characteristic functions h*(®l) (Equation 5) and he,(AT), 
respectively, lead to the following equation (Koopmans and 
Miller 1966): 

hT(Ol)/trap r -- her(AT )/®'Is(AT ) = h*(01) (12) 

The surface tension at the liquid water-ice interface, (r~=, can be 
estimated by the equation (Hesstvedt 1964) 

alg(AT) = 31.7(1 + 0.93 10 -2 AT), in dyn/cm (13) 

Taking account of the Equation 11, Equation 12 becomes 

ha~O1)/O-ap T = [/_q~/(gTo) ] AT/thi(AT ) = h*(®l) (14) 

Equation 14 expresses the relationship between the unfrozen 
water content, ®t, and the freezing point depression, AT. 
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T a b l e  1 Analy tca l  expressions for h'(01) and /( '*(01) normalized 
curves  

• = [1/(1 + (a lh ' l )n ]  m for h <  0 

@ - -  1.0 for h >  0 

where  @ - -  (01 - -  O r ) / ( O s  - Or),  m = 1 - -  1/n 

K" ( 0 1 )  ffi c (01 los)  h 

(T1.1) 

(T1.2) 

Set 1/Gain factor model Set 2/STVF method 

Parameters Drainage Infiltration Drainage Infiltration 

05 
Or 
a (dyn cm -2) 
n 
MQE" 

( cm 2 dyn - 1 ) 
c (cm3h -2) 
b 
CC b 

0.30 0.30 0.30 0.30 
0.06 0.06 0.06 0.06 
1.289 3.11 2.81 2.82 
5,39 2.75 5.28 2.53 

7.1 x l 0  -2 0.108 8.8 x 10 -2 0.235 

444.01 332.1 
3.01 3.284 
0.91 0.78 

a Mean quadratic error. 
b Correlation coefficient. 

Because of the fact that no experimental investigations have 
been carded out for determining the el(AT) relationship for 
the soil studied, Equation 14 allowed to estimate the amount 
of unfrozen water as a function of the temperature decrease 
below 273.16K (0°C). This relationship is illustrated in Figure 
4. From this figure, the steep decrease of the unfrozen water 
content O1 with a relative small decrease in AT can be seen. 

The presence of the ice in the frozen zone restricts liquid 
water movement and, hence, reduces considerably medium's 
conductive ability. Different methods, consisting in the use of 
specific permeameters, have been developed for measuring the 
hydraulic conductivity of the frozen soil (Aguirre-Puente and 
Gruson 1983; Burt and Williams 1976; Miller et al. 1975). 

In the present study, the hydraulic conductivity of the frozen 
soil K=, as a function of the unfrozen water content O1, is 
calculated by the equation 

K,(O0 = 1(O,)K*(Od (15) 

In Equation 15, the parameter I is an impedance factor, which 
is assumed to be a function of the volumetric ice content, O B 
(Jame and Norum 1980). 

I(Og) = 10 -°'°~ (16) 

co is the exponent depending on soil type. 

Thermal properties of  the unfrozen soil 

In this study, the soil thermal coefficients, 2 and C* (thermal 
conductivity and volumetric heat capacity, respectively), are 
calculated by the well-known De Vries (1963) theoretical model. 
According to this model, 2 and C* are given by 

2 = ~ (Oiki2i)/(Oiki) (17) 
i = 1  

C* = ~. (CiOi) (18) 
i f f i l  

where 

i = index denoting medium's  substance (quartz, other minerals, 
organic matter, liquid watzr, ice or gaz) 

n = maximum number of substances 
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Figure 4 Unfrozen water content versus freezing-point depres- 
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Figure 5 Thermal conductivity versus liquid-water content for 
the unfrozen soil 

the apparent heat capacity is estimated by adding to the heat 
capacity of the medium, C* (Equation 18, ice phase included), 
the term: p~L~gc~O~/c~T, in which the derivative c30~/c3T is the 
slope of the characteristic curve ®1(AT) at any AT 
(Figure 4). The relationship C=p(AT) is shown in Figure 6. 

From this figure, it is obvious that a very small decrease in 
temperature below 273.16K (0°C), causes a sharp rise in the 
heat capacity of the soil. For comparison reasons, in the same 
figure, the dashed line represents the term C* only, whereas the 
solid line represents the latent heat and C* terms together 
(apparent heat capacity). 

Results and discussion 
In this work, two nonisothermal experimental tests (hereafter 
referred as tests A and B), including freezing on soil surface, 
have been simulated. These experiments correspond to different 
initial and boundary hydraulic and thermal conditions applied 
on the soil column (Table 2). 

It should be mentioned that the bottom of the column was 
connected to a Mariotte-type external reservoir of water, which 
was positioned at a constant depth (different for each 
experiment), with respect to the soil surface. This reservoir is 
graduated in cm 3, and volumes of water flowing into the 
column could be readily estimated (Figure 7). The external 
pressure h,~t (in centimeters of water depth), at the bottom of 
the column, is calculated by 

hex t = H + L + 1~, (19) 

where L = 55 cm and Ip = 0.2 cm. 

The value of h=, t is used for calculating the liquid water flux 
qm through the porous plate (flux continuity through the 
porous plate and into the soil at the depth z = L [lower 
boundary condition]; Table 2). 

For the set of the outlined conditions, the system of the heat 
and mass conservation equations (Equations 1 and 4) was 
solved by using an implicit finite difference scheme with explicit 
linearization of the transport coefficients (Vauclin et al. 1979). 

The predictive ability of this model was tested as follows. 
For the soil studied, the thermal diffusivity aT, which is equal to 
the ratio A/C*, was determined as a function of liquid water 
content ®1, by analyzing temperature profiles along the soil 
column, during nonisothermal transient experimental tests, 
according to a methodology proposed by Vauclin et al. (1978). 
Then, thermal conductivity, 2=aTC*, was derived by 
computing C* from Equation 18. 

The so determined values of 2 for the unfrozen soil and those 
calculated from the De Vries model (Equation 17) are 
illustrated in Figure 5. It can be concluded that there is a good 
agreement between experimental data and predicted values of 
2. It should be mentioned that no significant temperature 
dependence of 2 was observed. 

Thermal propert ies o f  the frozen so i l  

Thermal conductivity and heat capacity of the frozen soil were 
calculated by using the corresponding De Vries equations 
including the ice as an additional component of the system. 
Moreover, the latent heat of fusion delivered during the 
phase-change liquid water to ice is involved in the so-called 
apparent volumetric heat capacity, C=p, (Equation 3). This 
coefficient can be determined experimentally by using 
calorimetric methods (Williams 1964a). In the present study, 

cq =l~tam~'K) 

! 

Im - ~  

o -at AT¢~) 4 
Figure 6 "Apparent" volumetric heat capacity versus freezing- 
point depression 
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Table 2 Experimental initial and boundary conditions 

Conditions Hydraulic 

Initial H(z) = - 7 5  cm 

Thermal 

T(z) -- 294.16k (21°C) 

Test Boundary 
A LPOcm 

L b 55 cm 
qrn = 0 
qm = -a(hoxt - / p  -- hL) 

T = 271.16K ( -2°C)  
T = 294.16K (21 °C) 

Initial H(z) = - 6 5  cm T(z) = 296.16K (23°C) 

Boundary 
B LP0cm qm=0 

L b 56 cm qm = -a(hext - Ip - hL) 
T = 271.16K ( -2°C)  
T = 296.16K (23°C) 

" Upper boundary (soil surface). 
b Lower boundary (column's bottom). 

The discretization of the system of equations was performed in 
the z, t plane with a very fine space increment in the region 
near the freezing front (isothermal of 273.16K). Moreover, small 
time steps were needed at the initial stages when the freezing 
front penetrated rapidly into the column. At each time step and 
at each depth in the frozen zone of the soil (T < 273.16K), 
the ice content change (Equation 1) was equal to the variation 
of the unfrozen water content O1 corresponding to the freezing 
depression AT. The freezing front was assumed to be positioned 
midway between two adjacent depth nodes, the one node being 
in the frozen state (T < 273.16K) and the other in the unfrozen 
(T > 273.16K). 

It should be noted that the effects of hysteresis (between 
infiltration and drainage), on the matric potential water content 
normalized functions h*(Ol) (Figures 2a and 3a) have not been 
considered, and only the drainage curve was considered for 
describing the medium retention properties. This assumption 
was made for two reasons: (1) The initial moisture profile 
corresponding to either test A or test B was obtained after a 
drainage cycle, starting from soil's saturation (main drying). (2) 
During the freezing process, a permanent drying of the initial 
profile in the unfrozen zone was observed. In the frozen zone, 
the values of the cryogenic suction corresponding to the 
unfrozen water (Equation 11) are extremely high (Williams 
1976). For instance, a temperature decrease AT of - 1K yields 
- 12.5 bars of cryogenic suction or - 390.7 cm2/dyn (Equations 
12 and 13). As can be seen from Figures 2a and 3a, 
this value is far beyond the range of hysteresis in the normalized 
matric potential functions, h*(O1). 

The value of the exponent co (Equation 16), necessary for 
estimating the hydraulic conductivity of the frozen soil, K=, was 
selected equal to 8 (Vauclin et al. 1986). 

For each experiment, the following simulations have been 
carried out: 

1. The heat- and mass-transfer equations were solved 
simultaneously considering that the normalizations h*(O1) 
and K*(OI) were performed by means of the Gain factors 
Gh and Gk (Table 1; Equations T1.1 and T1.2; parameter 
set 1). Hereafter, this will be referred as (H + M/GF) 
simulation. 

2. The heat- and mass-transfer equations were solved 
simultaneously, assuming that Gb= Gk----I (Table 1; 
Equations TI.1 and T1.2; parameter set 2), hereafter referred 
as (H + M/STVF) simulation. 

3. Only the heat-transfer equation was solved (hereafter 
referred as r/-/] simulation). 

Total moisture, ®, and temperature, T, profiles along the soil 
column corresponding to tests A and B are illustrated in 
Figures 8a and b, and 9a and b, respectively. Additionally, in 
Figures 8c and d, and 9c and d are presented the cumulative 
volume of water entered into the column, 1/1, ar, d the freezing 
front location, Zf, with respect to time. In all figures, the 
experimental data are represented by solid symbols. Solid lines 
represent the (H + M/GF) simulated results, whereas dotted 
lines correspond to the results obtained by means of the 
(H + M/STVF) simulation. Finally, the dashed lines corre- 
spond to the (H) simulation results. 
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Figure 8 Numerical and experimental results for test A 
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Figure 9 Numerical and experimental results for test B 

The following comments can be made: 

1. There is a good agreement between experimental and 
numerical results for both experimental tests, in the case of 
(H + M/GF)  simulation. 

On the contrary, the (H + M/STVF) simulated results 
overestimate persistently both the movement of the freezing 
front and the quantity of water migrating into the column. 
When only heat-transport equation is solved, the inverse 
effect is observed (i.e., underestimation of the position of the 
moving freezing front). For  instance, in the case of test B, 
the total volume of liquid water entered into the column 
and the depth of the freezing front determined experiment- 
ally after 58 h are V t = 22 cm 3 and Zf = 6.3 crn, respec- 
tively. These values are almost equal to those calculated by 
the (H + M/GF)  simulation (solid lines/Figures 9c and d). 
The corresponding values calculated at the same time by the 
(H + M/STVF) simulation are V l = 24 era s and Zf = 7 cm, 
respectively (dotted lines/Figures 9c and d), whereas the 
position of the freezing front computed via (H) simulation 
yields Zf = 5 cm (dashed line/Figure 9d). Taking account 
of the scale of the physical model used (soil column), the 
magnitude of these discrepancies cannot be considered 
negligible when compared with real field conditions. 

These results demonstrate that the effect of mass transfer 
on the thermal state of soil is an important factor to be 
considered when simulating the freezing process in soil, 
because of the unavoidable interaction between frozen and 
unfrozen region, which is expressed mainly by means of the 
mass-transport equation. 

2. Because the ice phase in the frozen soil acts as a sink for 
the liquid water, the freezing process through the 
simultaneous effects of thermal and hydraulic gradients 
induce a migration of liquid water from the water table to 
the frozen zone. This phenomenon is more profound in the 
case of test B, where the position of the water table (initial 
profile) is closer to the soil surface. 

3. The moisture content in the unfrozen zone decreases sharply 
ahead of the freezing front, whereas, behind the freezing front 
the soil is at saturation conditions (i.e., volumetric unfrozen 
water and ice contents, ® = O,). 

Conclusion 

A simulation model was proposed for solving the problem of 
coupled heat and mass transfers in unsaturated soil during 
freezing. Comparison between the results of the proposed 
simulation model and experimental data obtained in a vertical 

soil column with the upper e n d  subjected to a negative 
temperature showed that the model used can successfully 
describe the overall processes related to soil freezing, provided 
that both transport equations are solved simultaneously. For  
the soil type studied in this work (fine/medium sand), important 
discrepancies between experimental and numerical moisture 
and thermal profiles were observed, for the case of the heat and 
mass simulation including the STVF theory and also when the 
simulation is performed only with the heat-transfer equation. 
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